Large magnetoelectric coupling in magnetically short-range ordered Bi5Ti3FeO15 film
نویسندگان
چکیده
Multiferroic materials, which offer the possibility of manipulating the magnetic state by an electric field or vice versa, are of great current interest. However, single-phase materials with such cross-coupling properties at room temperature exist rarely in nature; new design of nano-engineered thin films with a strong magneto-electric coupling is a fundamental challenge. Here we demonstrate a robust room-temperature magneto-electric coupling in a bismuth-layer-structured ferroelectric Bi₅Ti₃FeO₁₅ with high ferroelectric Curie temperature of ~1000 K. Bi₅Ti₃FeO₁₅ thin films grown by pulsed laser deposition are single-phase layered perovskit with nearly (00l)-orientation. Room-temperature multiferroic behavior is demonstrated by a large modulation in magneto-polarization and magneto-dielectric responses. Local structural characterizations by transmission electron microscopy and Mössbauer spectroscopy reveal the existence of Fe-rich nanodomains, which cause a short-range magnetic ordering at ~620 K. In Bi₅Ti₃FeO₁₅ with a stable ferroelectric order, the spin canting of magnetic-ion-based nanodomains via the Dzyaloshinskii-Moriya interaction might yield a robust magneto-electric coupling of ~400 mV/Oe·cm even at room temperature.
منابع مشابه
Magnetoelectric Effect in Ceramics Based on Bismuth Ferrite
Solid-state sintering method was used to prepare ceramic materials based on bismuth ferrite, i.e., (BiFeO3)1 - x -(BaTiO3) x and Bi1 - x Nd x FeO3 solid solutions and the Aurivillius Bi5Ti3FeO15 compound. The structure of the materials was examined using X-ray diffraction, and the Rietveld method was applied to phase analysis and structure refinement. Magnetoelectric coupling was registered in ...
متن کاملMechanical force involved multiple fields switching of both local ferroelectric and magnetic domain in a Bi5Ti3FeO15 thin film
Multiferroics have received intense attention due to their great application potential in multi-state information storage devices and new types of sensors. Coupling among ferroic orders such as ferroelectricity, (anti-)ferromagnetism, ferroelasticity and so on will enable dynamic interaction between these ordering parameters. Direct visualization of such coupling behavior in singlephase multife...
متن کاملPhase separation enhanced magneto-electric coupling in La0.7Ca0.3MnO3/BaTiO3 ultra-thin films
We study the origin of the magnetoelectric coupling in manganite films on ferroelectric substrates. We find large magnetoelectric coupling in La0.7Ca0.3MnO3/BaTiO3 ultra-thin films in experiments based on the converse magnetoelectric effect. The magnetization changes by around 30-40% upon applying electric fields on the order of 1 kV/cm to the BaTiO3 substrate, corresponding to magnetoelectric ...
متن کاملProbing the local strain-mediated magnetoelectric coupling in multiferroic nanocomposites by magnetic field-assisted piezoresponse force microscopy.
The magnetoelectric effect that occurs in multiferroic materials is fully described by the magnetoelectric coupling coefficient induced either electrically or magnetically. This is rather well understood in bulk multiferroics, but it is not known whether the magnetoelectric coupling properties are retained at nanometre length scales in nanostructured multiferroics. The main challenges are relat...
متن کاملde Strain response of magnetic order in perovskite - type oxide films
The role of elastic strain for magnetoelectric materials and devices is twofold. It can induce ferroic orders in thin films of otherwise non-ferroic materials. On the other hand, it provides the most exploited coupling mechanism in two-phase magnetoelectric materials and devices today. Complex oxide films (perovskites, spinels) are promising for both routes. The strain control of magnetic order...
متن کامل